2 resultados para Enterobacteria

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role that bacterial factors play in determining how bacteria respond to photocatalytic degradation is becoming increasingly recognised. Fimbriae which are thin, proteinaceous cell surface structures produced by many enterobacteria are generally considered to be important bacterial virulence determinants in the host. Recent studies, however, suggest that their expression may be increased during times of environmental stress to protect them against factors such as nutrient depletion and oxidation. In this study bacteria were grown under defined culture conditions to promote the expression of type 1 fimbriae and subjected to photocatalytic treatment. Results showed that Escherichia coli grown under conditions to express type 1 fimbriae were more resistant to photocatalytic destruction than control cultures, taking 75 min longer to be destroyed. Curli fimbriae are also known to play a role in environmental protection of bacteria and they are associated with biofilm production. The ability of the E. coli strain to produce curli fimbriae was confirmed and biofilms were grown and subjected to photocatalytic treatment. Biofilm destruction by photocatalysis was assessed using a resazurin viability assay and a loss of cell viability was demonstrated within 30 min treatment time. This study suggests that intrinsic bacterial factors may play a role in determining an organism’s response to photocatalytic treatment and highlights their importance in this disinfection process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.